1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автомобильные фары: светодиодные, галогенные, ксеноновые, лазерные и фары будущего

Фары будущего: «ксенон», «галоген» или светодиоды?

Чем «ксенон» отличается от «галогенок»? И почему светодиоды не отправили на свалку истории лампы накаливания и газоразрядную оптику? И что общего между лампами Philips и зубной пастой? Ответ на эти и другие вопросы вы найдете в нашем материале.

Как появились автомобильные фары? На первых машинах использовались примитивные фонари с восковыми свечами или керосиновыми горелками внутри, заимствованные от конных экипажей. Естественно, такие «коптилки» должным образом не освещали дорогу, а потому инженерам пришлось подыскивать примитивным фонарям более эффективную замену, коей оказалось ацетиленовое освещение: на долгое время неизменным спутником автомобилистов стала пара бочонков, один — с карбидом кальция, второй — с обычной водой. Перед ночной поездкой «шофэр» (как называли тогда водителей) устанавливал бочонки на автомобиль, открывал краником подачу воды, а последняя, попадая на карбид, способствовала выработке ацетилена — газа, который при горении дает достаточно мощный световой поток. Правда, через несколько часов бочонки приходилось перезаряжать, а фару, состоящую из зеркального отражателя и линзы, чистить от копоти…

На этих иллюстрациях приведены автомобили с ацетиленовым головным освещением, которое выдают не только большие фары, но и бочонки для карбида, установленные на подножках. А поскольку ацетилен оказался слишком мощным источником света, способным пробивать темноту на сотню метров, в качестве «габаритных огней» на машинах начала века использовались тусклые керосиновые горелки

Но почему нельзя было использовать лампы накаливания, которые появились даже раньше самого автомобиля? В 1899 году французская фирма Bassee & Michel попыталась объединить автомобильную фару и лампу накаливания, но конструкция получилась неудачной — лампы с угольной нитью на неровных дорогах быстро приходили в негодность, а большой расход энергии требовал громоздких аккумуляторных батарей, поскольку генераторы на машины тогда не ставили. И только повсеместное появление генераторов, а также начало выпуска нового типа лампочек с вольфрамовыми нитями «перевели» автомобильный транспорт на электрическое освещение. Вот только «электросвет» оказался… слишком ярким! Чтобы не слепить встречных водителей, пришлось придумывать дополнительные задвижки и шторки, уменьшать яркость лампочек, затем появилась двухнитевая лампа (с отдельными нитями для ближнего и дальнего света). В 1955 году, наконец, внедрили асимметричное освещение — когда фара со стороны пассажира светит дальше водительской.

Обратите внимание, как форма головной оптики определяла дизайн автомобилей (для наглядности возьмём разные поколения мерседесовского Е-класса). Долгое время фары оставались исключительно круглыми, на машинах 1960-х удалось внедрить квадратную оптику, расцвет популярности которой пришелся на 1980-е, а современные фары со «свободным отражателем» и вовсе развязали руки дизайнерам

Сейчас в фарах используются три источника света: лампы галогенные и газоразрядные, а также светодиоды. Про лазеры и прочую экзотику говорить рановато — до серийных автомобилей новомодные разработки дойдут нескоро. Тем более, что отказываться от «нелинзованной» фары, куда можно установить хоть «ксенон», хоть «галоген», хоть светодиоды, инженеры не собираются. Конструкция данного устройства доведена до совершенства: свет от лампы попадает на отражатель из металла, а затем проходит через рассеиватель — наружное стекло, состоящее из множества линз. Причем, когда появился новый пластик, не дающий усадки при формовке деталей, инженеры создали отражатель со «свободной поверхностью», который состоит из множества сегментов (каждый направляет поток света на определенную точку). Это позволило заменить тяжелое стекло легким пластиком и отказаться от рассеивателя.

Статья в тему:  Владелец реальных автомобилей DeLorean из фильма Назад в Будущее

Так устроена «нелинзованная» фара (для фары со «свободным» отражателем и традиционной схемы не отличаются): нить ближнего света расположена выше и впереди точки фокуса, причем колпачок внутри лампы «подрезает» поток света, чтобы освещать только верхнюю поверхность отражателя (рис. слева), а вот нить дальнего света и точка фокуса совпадают и поверхность отражателя используется целиком (рис. справа)

Фара «линзованная» (которую правильно называть светотехникой проекторного типа) устроена другим образом: свет от лампы попадает на отражатель, а затем направляется на специальный экранчик и собирающую линзу, которые формируют пучок света. И хотя сейчас «линзы» можно увидеть на многих машинах, поскольку они известны компактностью и точной организацией светового потока, инженерам-светотехникам поначалу пришлось решать проблему перегрева и избавляться от… слишком резкой светотеневой границы — оказалось, что глаз человека слишком быстро устает от четкой границы между светом и тенью. На «галогенках» проблему решили дифракционными кольцами (проще говоря, рисками на линзе), а на «ксеноне» — установкой автоматического корректора, наличие которого в России и в Европе для газоразрядной светотехники обязательно.

Схема «линзованной» оптики: слева — фара конца 80-х, справа — современная фара со свободным отражателем, наличие которого выдает экранчик меньшего размера. Этот экран, расположенный во втором фокусе, подправляет световой поток и формирует светотеневую границу, а затем лучи снова фокусируются линзой. «Линзами» сегодня оснащается большинство машин, а «нелинзованные» фары стали прерогативой недорогих авто, вроде «Калины» или «Логана»

Вот, собственно, мы и добрались до самого главного. Чем принципиально отличаются «ксенон», «галоген» и диоды? Галогенная лампа состоит из герметичной стеклянной колбы, внутри которой размещены электроды и нить накаливания из вольфрама, а также закачана газовая смесь, необходимая, чтобы «ловить» испаряющийся вольфрам и регенерировать нить (именно поэтому «галогенка» компактнее и долговечнее обычной лампочки). Газоразрядная оптика (чаще именуемая «ксеноном») нити накаливания не имеет: внутри такой лампы светится не раскаленная нить, а электрическая дуга, возникающая между электродами, оттого величина светового потока ксеноновой лампы гораздо больше, 3200 против 1500 лм «галогенки»! Вот поэтому европейские эксперты постановили, что таким фарам необходим автоматический корректор и омыватель. И ограничили цветовую температуру лампы.

Для того, чтобы «ксенон» работал, одной лампы недостаточно. Ещё нужен модуль розжига, который из «бортовых» 12 вольт выдаст короткий импульс на 25 киловольт переменного тока. Чтобы сделать «биксенон», нужно четыре таких модуля, либо применение хитрых систем: на «линзованной» оптике включить «дальний» можно, убирая экранчик при помощи соленоида, а на «нелинзованной» приходится перемещать лампу

Статья в тему:  Автомобильная симфония всех моделей Mercedes-Benz AMG

Но если «ксенон» и «галоген» — это лампы, то светодиод — полупроводниковый прибор, который вырабатывает свет при прохождении тока. Полупроводник срабатывает быстрее традиционной лампочки, потребляет меньше энергии, отличается фактически неограниченным сроком службы и минимальными размерами. Но пока диодам поручают только второстепенные задачи (на основе светодиодных технологий делают стоп-сигналы, габаритные и дневные ходовые огни), хотя совсем недавно инженеры и дизайнеры прочили полупроводникам большое будущее. Все надеялись, что крохотный источник света обеспечит свободу компоновки и позволит избавиться от громоздких фар. Однако на примере Audi R8 и Nissan Leaf хорошо видно — существующая диодная оптика по размерам не отличается от газоразрядной.

Пока ученые бьются над созданием лазерной и волоконной оптики, источниками света остаются «галогенки», «ксенон» и светодиоды. На рис. А изображена двухнитевая галогенная лампа Н4, дающая ближний и дальний свет, на рис. Б — однонитевая лампа Н7 (которых для создания ближнего и дальнего нужно две), а на рис. В и Г схематично показаны ксеноновая газоразрядная лампа и светодиод, соответственно

Так почему светодиоды не вытеснили «ксенон» и примитивные «галогенки»? Оказалось, что полупроводниковая оптика имеет множество недостатков. Пока даже лучшие светодиоды не способны по светоотдаче догнать «ксенон» и остаются на уровне хороших «галогенок», что требует обязательного применения отражателя. Также диодные фары требуют отдельной системы охлаждения (инженеры даже пробовали охлаждать фары антифризом) и отличаются необычайной дороговизной: одна фара стоит примерно 1300 евро… Естественно, инженеры развивают данное направление, но до массового перехода автомобильного освещения на светодиоды далеко, поэтому ближайшее будущее остается за «ксеноновой» оптикой, которая становится компактнее и совершеннее, по энергопотреблению догоняя диодную.

В лаборатории Philips мы наглядно увидели, как светят современные фары. На рис. А световой поток от стандартной «галогенки», на рис. Б можно увидеть, как светят лампы Philips X-treme Vision, дающие 100-процентное усиление светового потока, на рис. В «дорогу» освещают газоразрядные ксеноновые лампы, а рис. Г — это свет новомодных светодиодных фар электромобиля Nissan Leaf

Но и списывать «галогенки» на свалку истории рановато! Как считают инженеры компании Philips, современная галогенная лампа может светить на уровне газоразрядной. Чтобы этого добиться, необходимо заменить тугоплавкое стекло колбы кварцевым, во-вторых, стекло подвергнуть оптической полировке, в-третьих, нанести на колбу колпачок из палладия… И, наконец, применить новую смесь газов, куда входит ксенон, чтобы повысить температуру нити и приблизиться к спектру солнечного свечения. На выходе получается пусть дорогая, но уникальная лампочка: её световой поток на 100% мощнее обычной галогенной лампы, а срок службы — вдвое больше. Причем на лабораторной установке мы наглядно убедились, что «галогенка» Philips X-treme Vision по светосиле действительно догоняет «ксенон».

Так выглядит одна из многочисленных лабораторий компании Philips, в которых создается автомобильная оптика будущего. На одной стене установлен экран, имитирующий дорогу, на котором нанесены ключевые точки (в них измеряется освещенность), на другой установлены разнообразные фары. Соответственно, инженер имеет возможность оценить как конкретную фару, так и характеристики источника света

Статья в тему:  Магическая самовосстанавливающаяся пленка защищает автомобили от царапин

Кроме лекции об автомобильном освещении, на заводе Philips мы увидели и реальное производство, на котором выпускаются лампы. И это бесчеловечно! В том смысле, что присутствие человека при выпуске «галогенок» и «ксенона» минимизировано — кругом трудятся современные роботы, обеспечивающие фактически стопроцентное отсутствие брака. Но, кроме фактически полной автоматизации, удивило и другое: зачем нужен составной цоколь и дополнительная производственная операция, чтобы выровнять нить накаливания относительно цоколя? Оказывается, данный процесс является ключевым, иначе готовая лампочка будет светить «неправильно» — слепить встречных водителей или, напротив, подсвечивать небо. Поэтому взаимное расположение «ниточки» и «основания» проверяется компьютером, а часть продукции осматривают люди.

Немецкий завод компании Philips, выпускающий галогенные и ксеноновые лампы (диоды делают по другую сторону Атлантики, на территории Силиконовой долины), снаружи выглядит довольно скромно. Увы, показать читателям оборудование, скрытое внутри, мы не можем — на предприятии действует строжайший запрет на фотосъемку… Секретом остается и количество ламп, производимых заводом

«Ксенон» производят похожим «бесчеловечным» образом: вот робот подхватывает стеклянную трубочку, вот вставил нижний электрод, а дальше начинается такая круговерть, что только успевай следить! Трубочку заполнили составом солей и вставили верхний электрод, закачали охлажденный до −190ºС ксенон и запаяли колбочку, одели металлическую юбочку и обрезали излишки стекла, проверили горелку — готово? Нет, чтобы газоразрядные лампы светили одинаково, их нужно отжечь — включить и несколько часов дожидаться, пока цветовая температура достигнет нужной величины. Вот теперь готово! Осталось только выяснить, какая связь между лампами Philips и зубной пастой. Всё просто: бракованные стеклянные трубочки для колб не выбрасываются на свалку, а перемалываются в абразивный порошок. Из которого затем делают отбеливающие пасты для стоматологических кабинетов.

Автомобильные фары: светодиодные, галогенные, ксеноновые, лазерные и фары будущего

Вот как работают светодиодные, галогенные, ксеноновые, лазерные фары.

Итак, мы рассмотрим в нашей статье различные типы автомобильных фар и объясним вам, как работает каждая технология. В том числе мы познакомим вас с будущими технологиями, которые изменят автомобильную оптику до неузнаваемости.

На заре автопромышленности автомобильные фары были просты: лампочка с отражающей чашей и стеклянная крышка – вот и вся конструкция передней оптики. Но это было лучше, чем ничего. Несмотря на то что первые фары имели небольшую мощность, они хоть как-то делали автомобиль видимым на дороге, а также немного помогали водителю ехать в темное время суток. Правда, о движении в полной темноте речи не шло. Первые фары были не способны обеспечить нормальную освещенность дороги.

Со временем желание автомобилистов видеть, куда они едут в темноте, привело к появлению в автопромышленности технологичных фар. Мы стали свидетелями появления галогенной оптики. Затем на сцене автопромышленности появились ксеноновые лампы, которые сделали огромный скачок в автомобильном освещении. Но поскольку автопроизводители полвека искали, как сделать автомобиль экономичным, разработки автомобильной оптики не остановились. В итоге на смену ксеноновой оптике вместе с облегченными кузовами, двигателями и т. п. пришла светодиодная оптика, которая за короткий срок стала популярна во всем мире.

Статья в тему:  Самые мощные автомобили на автосалоне во Франкфурте

Однако на этом технологии оптики не перестали эволюционировать. Использование светоизлучающих диодов стало развиваться и дальше. В итоге миру были представлены светодиодные матричные фары, которые иногда еще называют адаптивной LED-оптикой.

После этого Audi и BMW пошли еще дальше, представив уникальную технологию лазерных фар, которая подтолкнула развитие автомобильной оптики в будущее. Интересно, как скоро снова произойдет следующий прорыв в этой сфере? Кто знает. Вполне возможно, что уже завтра будет представлена новая технология автомобильного освещения, которая снова перевернет наше представление об автомобильной оптике.

Ну, а пока давайте подробно рассмотрим все варианты (типы) фар, которые сегодня уже используются в автопромышленности.

Какой тип фар лучше для вас?

Ниже мы по разделам объясним вам, как работает каждый тип фар, используемый сегодня в автомире. Естественно, каждый вид автомобильной оптики имеет свои плюсы и минусы. И это логично, поскольку известно, что идеального в мире не существует. Также вы должны понять, что не всем водителям нравятся современные технологии. Например, есть водители, которые ни за что не хотят отказываться от старых надежных галогенных ламп в пользу того же ксенона или светодиодов.

А какой тип фар нравится вам? Например, многие автолюбители ломают голову перед покупкой машины, решая, какой тип освещения должен быть в машине. И, тут, конечно, дилемма более сложная. Ведь наш выбор должен зависеть не только от каких-то вкусов и личных взглядов, но и от того, что выгоднее: галоген, ксенон или светодиод?

Галогенные лампы являются самым старым типом источника света в автомобильных фарах. Если вы ищете дешевые и относительно надежные фары, то вас не должно беспокоить, что галогенная оптика устарела по сравнению с современными фарами. Галогенное освещение в автомобиле проверено временем и зарекомендовало себя с довольно-таки хорошей стороны. Сегодня автомобили с галогенными фарами стоят намного дешевле, чем машины с ксеноновой или светодиодной оптикой.

Однако галогенные фары, как правило, выглядят сегодня устаревшими. Им просто не хватает высокотехнологичного внешнего вида, а также более интересных опций. В том числе галогенная оптика не может сравниться с качеством освещения дороги по сравнению с ксеноновыми или светодиодными фарами. Но главное – галоген не может соперничать с более современными фарами по сроку службы. Галогеновые лампы имеют маленький срок службы в отличие от ксеноновых или светодиодных ламп.

С другой стороны, стоимость ксеноновой лампы существенно больше галогенной. Кроме того в ксеноновых фарах используется электрооборудование, которое со временем выходит из строя. В том числе есть проблема с выгоранием линз в оптике, стоимость замены которых может быть сопоставима со стоимостью новых галогенных фар.

Так что светодиодные источники освещения, вероятнее всего, в скором времени отправят на пенсию не только галоген, но и ксенон.

Сегодня на авторынке представлено огромное количество различных светодиодных фар, начиная от самых простых и до невероятно сложных (и, следовательно, дорогостоящих для ремонта и замены). Светодиоды не только выглядят современно. На их основе автопроизводители стали разрабатывать новые виды автомобильной оптики, представив автомиру матричные и лазерные фары.

Статья в тему:  Новинки Женевского автосалона: Kia представил универсал Ceed

В настоящий момент матричные фары появились пока только на премиальных автомобилях, поскольку эта технология еще дорога. Матричная технология LED основана на объединении светодиодов с датчиками, что позволяет адаптировать лучи света для максимального охвата дороги впереди машины, беря в расчет встречное движение. В итоге эта технология, по сути, отправила дальний и ближний свет на пенсию. В матричных фарах у водителя нет необходимости выбирать, на каком освещении ехать (ближний, дальний). Автоматика сама решает, как освещать дорогу.

Ну и, наконец, в мире теперь есть и лазерные фары, которые предлагают лучшую осветительную мощность. Но пока их можно найти только в нескольких новых автомобилях премиум-сегмента. Причина, по которой лазерные фары пока не появились на обычных автомобилях, – это себестоимость этих фар, а также невероятно дорогая стоимость их ремонта/замены (в некоторых машинах стоимость одной фары может составлять 8000-10000 долларов). Но главной проблемой лазерных фар является их хрупкость. Например, даже при небольшом ударе и появлении трещины на стекле фары требуется полная замена блока оптики.

Итак, после того как вы получили общее представление о типах фар в сегодняшней автопромышленности, давайте теперь перейдем непосредственно к описанию каждой технологии, чтобы вы смогли выбрать для себя, какая оптика подходит вам больше всего. Вот как каждый тип фар работает.

Что такое галогенные фары, и как они работают?

Галогенные фары названы в честь группы элементов (галогенов), которые используются внутри них. Так, в галогенной фаре устанавливаются лампы, внутри которых закачан газ галоген, продлевающий срок службы вольфрамовой нити. Но все равно по сравнению с более современными источниками света галогенные лампы работают недолго.

Но, несмотря на долговечность галогенных ламп, галогенные источники освещения стали популярны не только в автопромышленности, но и в других отраслях. Например, галогенные источники освещения уже давно (более полувека) массово используются в домах, уличных фонарях и т. д.

Тем не менее сегодня мир стоит на пороге революции в освещении. Например, во многих странах использование галогенных источников освещения в домах уже запрещено из-за низкой энергоэффективности по сравнению с энергосберегающими и со светодиодными лампами. Но, несмотря на это, в автомобильной промышленности галогеновые фары по-прежнему массово используются на многих автомобилях. Хотя стоит признать, что постепенно им на смену приходит ксеноновая и светодиодная оптика.

Как работают галогенные лампы?

Галогенки – один из самых старых типов ламп, которые вы сегодня можете найти в автомобилях. Эти лампочки работают аналогично обычным лампам накаливания, которые мы используем у себя дома. Эти лампочки просты в устройстве: стеклянная колба, нить и газ. На нить подается электричество, которая, пропуская его через себя, начинает выделять свет (и, естественно, тепло от нагрева).

Статья в тему:  Топ 10 автомобилей, которые чаще всего попадают в ДТП

Галогенными лампы называются, так как внутри стеклянных колб используется газ галоген, который предотвращает повреждение вольфрамовой нити, а также защищает стекло от почернения из-за нагрева.

Фары ближайшего будущего: ксенон, светодиоды или лазер

В нашей прошлой публикации мы проследили долгий путь автомобильного освещения от керосинок и ярких карбидных фонарей до привычных нам галогенных ламп с рассеивателями.

Но уже в 90-е годы стало понятно, куда двигаться дальше. А двигаться можно было в сторону снижения энергозатрат и повышения яркости. Ведь даже линзованная оптика с обычными лампами накаливания уже не отвечала современным требованиям. И тогда на борьбу с темнотой выдвинулись газоразрядные источники света, давно используемые в стационарном освещении.

Ксенон: мощно, сложно и дорого

В народе за такими фарами прочно закрепилось название «ксенон», хотя к ксеноновым дугоразрядным лампам, как это ни странно звучит, они отношения не имеют. Огромные мощности и удачный спектр при плохом КПД у дугоразрадных ламп оказались не нужны, а то, что мы привыкли называть «ксеноном» на самом деле является металлогалогенной лампой, внутри которой горит смесь газов. В ней иногда используется газ ксенон как один из ингредиентов, но зачастую обходятся и без него.

Эффективность такого решения более чем достаточная — 80–100 люменов на каждый ватт мощности, а спектр излучаемого света оказался одним из лучших и наиболее естественных. Для сравнения: обычная «галогенка» дает 13-15 люменов на ватт, газонаполненная — около 10, а обычная вакуумная — около 8.

Никакие другие типы газоразрядных ламп не смогли составить им конкуренции, даже натриевые лампы с отдачей до 200 люменов на ватт не прошли строгий отбор из-за ограниченного светового спектра. Их желтый свет мог не отражаться от некоторых поверхностей, и такие предметы казались бы темными, а с безопасностью на дороге не шутят.

Основных сложностей при внедрении газоразрядных ламп было две. Во-первых, для того чтобы зажечь дугу внутри колбы, требуется напряжение порядка 25–50 тысяч вольт. Во-вторых, внутри колбы светится весь объем газа, и этот свет надо очень четко направлять в нужную сторону.

Вторую проблему отлично решила прожекторая (линзованная) оптика, о кторой речь уже шла выше. Ну а развитие электроники успешно справилось с первой проблемой. В 1991 году компания Hella, кстати, начинавшая еще с выпуска ацетиленовых ламп, начала продавать первые комплекты серийного «ксенона» для машин. Это была очень недешевая опция для BMW 7-й серии в кузове E32.

В отличие от обычных ламп, которые запитаны непосредственно от бортовой электросети, «ксенон» питается через так называемый балласт или же блок розжига.

Как мы уже говорили, при старте газоразрядной нужен импульс напряжения в 25 тысяч вольт и выше, а после запуска необходимо точно выдерживать ток. Просто удержание напряжения бесполезно — лампа сильно меняет сопротивление с прогревом. Так что блок розжига — очень сложная и дорогая часть лампы, на нем лежит ответственность и за ее быстрый «поджиг», и за ее долговечность ( при колебаниях тока выгорают электроды внутри колбы, и лампа идет под замену).

Статья в тему:  Ожидаемая премьера Dodge Challenger на автосалоне в Нью-Йорке 2014

Как мы уже говорили, газоразрядные (то есть «ксеноновые») фары очень эффективны и выдают 80–100 люменов на ватт. При стандартном 35-ваттном энергопотреблении такая лампа дает очень много света. Кроме того, она греется очень слабо и не имеет хрупкой нити накаливания, а значит, срок ее службы выше и она не боится вибраций.

Самые высокие значения КПД относятся к источникам очень «холодного» света со световой температурой выше 5 500 кельвинов — это характерное голубоватое свечение. Лампы с более комфортной для глаза световой температурой в 3 500 или 2 700 кельвинов имеют меньший КПД, но все равно между ними и обычными лампами накаливания пропасть в эффективности и мощности светового потока.

Обратная сторона всех этих плюсов — высокая стоимость оборудования, которую производителям пока не удалось «победить». Например, оригинальный блок розжига для Volvo S80 II обойдется в 14–17 тысяч, а для Volkswagen Passat B6 — в 17–18 тысяч. Причем более дешевые аналоги существуют далеко не всегда.

Не стоит забывать и про обязательный гидрокорректор уровня фар, который автоматически меняет «угол атаки» фар в зависимости от наклона кузова, чтобы не слепить встречных автомобилистов, проезжая неровности. А также про омыватель фар, без которого «ксенон» использовать нельзя, так как сквозь грязь сильные лучи «газоразрядного» света некорректно преломляются и светят в разные стороны. Все это не позволяет технологии стать массовой. На дешевые автомобили по-прежнему ставят обычные «галогенки».

Фары будущего: «ксенон», «галоген» или светодиоды?

Чем «ксенон» отличается от «галогенок»? И почему светодиоды не отправили на свалку истории лампы накаливания и газоразрядную оптику? И что общего между лампами Philips и зубной пастой? Ответ на эти и другие вопросы вы найдете в нашем материале.

Как появились автомобильные фары? На первых машинах использовались примитивные фонари с восковыми свечами или керосиновыми горелками внутри, заимствованные от конных экипажей. Естественно, такие «коптилки» должным образом не освещали дорогу, а потому инженерам пришлось подыскивать примитивным фонарям более эффективную замену, коей оказалось ацетиленовое освещение: на долгое время неизменным спутником автомобилистов стала пара бочонков, один — с карбидом кальция, второй — с обычной водой. Перед ночной поездкой «шофэр» (как называли тогда водителей) устанавливал бочонки на автомобиль, открывал краником подачу воды, а последняя, попадая на карбид, способствовала выработке ацетилена — газа, который при горении дает достаточно мощный световой поток. Правда, через несколько часов бочонки приходилось перезаряжать, а фару, состоящую из зеркального отражателя и линзы, чистить от копоти.

Но почему нельзя было использовать лампы накаливания, которые появились даже раньше самого автомобиля? В 1899 году французская фирма Bassee & Michel попыталась объединить автомобильную фару и лампу накаливания, но конструкция получилась неудачной — лампы с угольной нитью на неровных дорогах быстро приходили в негодность, а большой расход энергии требовал громоздких аккумуляторных батарей, поскольку генераторы на машины тогда не ставили. И только повсеместное появление генераторов, а также начало выпуска нового типа лампочек с вольфрамовыми нитями «перевели» автомобильный транспорт на электрическое освещение. Вот только «электросвет» оказался. слишком ярким! Чтобы не слепить встречных водителей, пришлось придумывать дополнительные задвижки и шторки, уменьшать яркость лампочек, затем появилась двухнитевая лампа (с отдельными нитями для ближнего и дальнего света). В 1955 году, наконец, внедрили асимметричное освещение — когда фара со стороны пассажира светит дальше водительской.

Статья в тему:  Приложение 1. Отступления от обязательства допускать к международному движению автомобили и прицепы

Сейчас в фарах используются три источника света: лампы галогенные и газоразрядные, а также светодиоды. Про лазеры и прочую экзотику говорить рановато — до серийных автомобилей новомодные разработки дойдут нескоро. Тем более, что отказываться от «нелинзованной» фары, куда можно установить хоть «ксенон», хоть «галоген», хоть светодиоды, инженеры не собираются. Конструкция данного устройства доведена до совершенства: свет от лампы попадает на отражатель из металла, а затем проходит через рассеиватель — наружное стекло, состоящее из множества линз. Причем, когда появился новый пластик, не дающий усадки при формовке деталей, инженеры создали отражатель со «свободной поверхностью», который состоит из множества сегментов (каждый направляет поток света на определенную точку). Это позволило заменить тяжелое стекло легким пластиком и отказаться от рассеивателя.

Фара «линзованная» (которую правильно называть светотехникой проекторного типа) устроена другим образом: свет от лампы попадает на отражатель, а затем направляется на специальный экранчик и собирающую линзу, которые формируют пучок света. И хотя сейчас «линзы» можно увидеть на многих машинах, поскольку они известны компактностью и точной организацией светового потока, инженерам-светотехникам поначалу пришлось решать проблему перегрева и избавляться от. слишком резкой светотеневой границы — оказалось, что глаз человека слишком быстро устает от четкой границы между светом и тенью. На «галогенках» проблему решили дифракционными кольцами (проще говоря, рисками на линзе), а на «ксеноне» — установкой автоматического корректора, наличие которого в России и в Европе для газоразрядной светотехники обязательно.

Вот, собственно, мы и добрались до самого главного. Чем принципиально отличаются «ксенон», «галоген» и диоды? Галогенная лампа состоит из герметичной стеклянной колбы, внутри которой размещены электроды и нить накаливания из вольфрама, а также закачана газовая смесь, необходимая, чтобы «ловить» испаряющийся вольфрам и регенерировать нить (именно поэтому «галогенка» компактнее и долговечнее обычной лампочки). Газоразрядная оптика (чаще именуемая «ксеноном») нити накаливания не имеет: внутри такой лампы светится не раскаленная нить, а электрическая дуга, возникающая между электродами, оттого величина светового потока ксеноновой лампы гораздо больше, 3200 против 1500 лм «галогенки»! Вот поэтому европейские эксперты постановили, что таким фарам необходим автоматический корректор и омыватель. И ограничили цветовую температуру лампы.

Но если «ксенон» и «галоген» — это лампы, то светодиод — полупроводниковый прибор, который вырабатывает свет при прохождении тока. Полупроводник срабатывает быстрее традиционной лампочки, потребляет меньше энергии, отличается фактически неограниченным сроком службы и минимальными размерами. Но пока диодам поручают только второстепенные задачи (на основе светодиодных технологий делают стоп-сигналы, габаритные и дневные ходовые огни), хотя совсем недавно инженеры и дизайнеры прочили полупроводникам большое будущее. Все надеялись, что крохотный источник света обеспечит свободу компоновки и позволит избавиться от громоздких фар. Однако на примере Audi R8 и Nissan Leaf хорошо видно — существующая диодная оптика по размерам не отличается от газоразрядной.

Статья в тему:  Лайфхак: Как из мышки и барного стула сделать руль для автосимулятора

Так почему светодиоды не вытеснили «ксенон» и примитивные «галогенки»? Оказалось, что полупроводниковая оптика имеет множество недостатков. Пока даже лучшие светодиоды не способны по светоотдаче догнать «ксенон» и остаются на уровне хороших «галогенок», что требует обязательного применения отражателя. Также диодные фары требуют отдельной системы охлаждения (инженеры даже пробовали охлаждать фары антифризом) и отличаются необычайной дороговизной: одна фара стоит примерно 1300 евро. Естественно, инженеры развивают данное направление, но до массового перехода автомобильного освещения на светодиоды далеко, поэтому ближайшее будущее остается за «ксеноновой» оптикой, которая становится компактнее и совершеннее, по энергопотреблению догоняя диодную.

Но и списывать «галогенки» на свалку истории рановато! Как считают инженеры компании Philips, современная галогенная лампа может светить на уровне газоразрядной. Чтобы этого добиться, необходимо заменить тугоплавкое стекло колбы кварцевым, во-вторых, стекло подвергнуть оптической полировке, в-третьих, нанести на колбу колпачок из палладия. И, наконец, применить новую смесь газов, куда входит ксенон, чтобы повысить температуру нити и приблизиться к спектру солнечного свечения. На выходе получается пусть дорогая, но уникальная лампочка: её световой поток на 100% мощнее обычной галогенной лампы, а срок службы — вдвое больше. Причем на лабораторной установке мы наглядно убедились, что «галогенка» Philips X-treme Vision по светосиле действительно догоняет «ксенон».

Кроме лекции об автомобильном освещении, на заводе Philips мы увидели и реальное производство, на котором выпускаются лампы. И это бесчеловечно! В том смысле, что присутствие человека при выпуске «галогенок» и «ксенона» минимизировано — кругом трудятся современные роботы, обеспечивающие фактически стопроцентное отсутствие брака. Но, кроме фактически полной автоматизации, удивило и другое: зачем нужен составной цоколь и дополнительная производственная операция, чтобы выровнять нить накаливания относительно цоколя? Оказывается, данный процесс является ключевым, иначе готовая лампочка будет светить «неправильно» — слепить встречных водителей или, напротив, подсвечивать небо. Поэтому взаимное расположение «ниточки» и «основания» проверяется компьютером, а часть продукции осматривают люди.

«Ксенон» производят похожим «бесчеловечным» образом: вот робот подхватывает стеклянную трубочку, вот вставил нижний электрод, а дальше начинается такая круговерть, что только успевай следить! Трубочку заполнили составом солей и вставили верхний электрод, закачали охлажденный до −190ºС ксенон и запаяли колбочку, одели металлическую юбочку и обрезали излишки стекла, проверили горелку — готово? Нет, чтобы газоразрядные лампы светили одинаково, их нужно отжечь — включить и несколько часов дожидаться, пока цветовая температура достигнет нужной величины. Вот теперь готово! Осталось только выяснить, какая связь между лампами Philips и зубной пастой. Всё просто: бракованные стеклянные трубочки для колб не выбрасываются на свалку, а перемалываются в абразивный порошок. Из которого затем делают отбеливающие пасты для стоматологических кабинетов.

  • Светлое будущее. BMW показала перспективный головной свет
Статья в тему:  Самые мощные автомобили на автосалоне во Франкфурте

Алексей Кованов
Фото автора и фирм-производителей
Рисунки Оксаны Эске

Разбираемся в технологии фар: Ксеноновые, Диодные, Лазерные, Галогенные

В современных автомобилях используются несколько технологий освещения, каждая из которых имеет свои уникальные преимущества и недостатки. Предупрежден — значит вооружен! Ниже мы расскажем про технологии фар, знание которых поможет вам выбрать правильный свет при покупке нового автомобиля.

Галогенные фары

Самые простые по конструкции и недорогие, поэтому чаще всего применяются в автомобилях эконом-класса.EZ.RU — онлайн запись на ТО и ремонт в 117 автосервисов Москвы

Работают по тому же принципу, что и обычные лампы накаливания. Ключевое отличие — для защиты нити внутри приспособления используется галоген, а не вакуум, что позволяет получить более яркое свечение при том же количестве энергии.

  • Низкая стоимость
  • Простая замена
  • Есть в любом автомагазине

Нам не нравится:

  • Сравнительно небольшой срок службы
  • Проигрывают по яркости ксеноновым, LED и лазерным

Ксеноновые фары

Как правило, предлагаются в стандартной комплектации автомобилей среднего и более высокого ценого сегмента или доступны в качестве опции для автомобилей эконом-класса.

Работают так же, как люминесцентные лампы в офисах, пропуская электрический ток через смесь газов внутри стеклянного цилиндра.

  • Производят белый свет и освещают лучше, чем галогенные
  • Более длительный срок службы в сравнении с галогенными

Нам не нравится:

  • Стоимость на порядок выше галогенных

Светодиодные фары (LED)

Значение этой технологии для снижения потребления энергии в мире было настолько велико, что японские ученые получили за это изобретение Нобелевскую премию.

Диодам не нужна ни нить накаливания, как в обычных лампах, ни реакция с газом электрического тока. Вместо этого они производят свет с помощью гораздо более эффективного процесса, называемого электролюминесценцией.

  • Формируют более интенсивный сфокусированный луч
  • Уменьшают ослепление встречных машин

Нам не нравится:

  • По-прежнему намного дороже ксеноновых

Лазерные фары

Лазеры уже давно можно увидеть не только в фильме «Звездные войны» — эту технологию все чаще берут на вооружение автопроизводители для создания головной оптики.

Лазерные фары — звучит круто, но на самом деле сами лазерные лучи лишь частично создают свет. Синий лазер фокусируется на фосфорном газе, который флуоресцирует и излучает чрезвычайно яркую, почти дневную цветовую температуру.

  • Cпособны производить свет в 1000 раз более мощный, чем светодиоды
  • Самая высоокая дальность — до 600 метров
  • Супер энергоэффективны

Нам не нравится:

  • Стоят как новый автомобиль эконом класса

Заключение

Как и все инновационные технологии, стоимость лазерных и светодиодных фар со временем будет снижаться и они будут использоваться во все более доступных автомобилях, так что нас ждут интересные времена!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: